Year 10 Edexcel Foundation Maths Course Outline

Students have 8 lessons per fortnight Homework is set 4 times a fortnight mainly from student practice book to be found on Firefly			
	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Perimeter area and volume 1 Graphs	Students should be able to: Find the perimeter and area of rectangles and triangles; calculate the area of parallelograms; estimate lengths; calculate a missing length given the area; solve worded area and perimeter questions; calculate the area and perimeter of trapezia; convert between area measures; find the height of a trapezium given its length; calculate the perimeter and area of compound shapes made from triangles and rectangles; calculate areas in hectares and convert between hectares and m 2 ; problem solving compound area problems; calculate the surface area of a prism; calculate the surface are of a cuboid; calculate the surface are of a prism; calculate the volume of a cuboid; calculate the volume of a prism; solve problems involving surface area and volume; convert between measures of volume. Students should be able to: Co-ordinates in four quadrants; find the midpoint of a line segment; recognise, name and plot horizontal and vertical graphs; recognise, name and plot the graphs of $\mathrm{y}=$ x and $y=-x$; draw graphs to represent relationships; substitute positives and negatives into expressions; plot a straight line graph from a table of values; understand terms parallel, gradient, intercept; find the gradient of a line (one across...); identify and interpret the gradient from an equation; understand that parallel lines have the same gradient; calculate the gradient given 2 points; match equations of lines which are parallel; understand what m and c represent in $y=m x+$ c ; sketch graphs given the values of m and c ; draw and interpret graphs from real data; comparing graphs using mathematical arguments; substitute into speed formula; use, draw and interpret distance time graphs to solve problems; interpret rate of change from distance time graphs; find the midpoint and gradient from a line segment recap; understand when predictions are reliable; Interpolation and extrapolation.	Practice book chapter 8 - Areas - Volumes - Surface areas - Exam questions (assessed) Practice book chapter 9 - Midpoint - $Y=m x+c$ - Gradient - Draw and interpret distance time graphs - Exam questions (assessed)
	Nature of Landmark Assessment	A 35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	$\begin{array}{l}\text { Topic and } \\ \text { approximate } \\ \text { duration }\end{array}$		Key Learning Areas	$\begin{array}{c}\text { Homework Options } \\ \text { Students will be guided by the } \\ \text { class teacher as to which level } \\ \text { to complete (according to }\end{array}$
target level)				

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Multiplicative reasoning Midyear Test	Students should be able to: Calculating simple percentages; write one value as a fraction and percentage of another; calculate percentage profit or loss; express a given number as a percentage of another number in more complex situations; increase or decrease an amount by a given percentage; reverse percentages; percentage multipliers; find an amount after repeated percentage changes; calculate compound interest; solve growth and decay problems; solve problems involving Density, Mass and Volume; solve problems involving pressure, force and area; problem solving questions on compound measures; calculate average speed, distance and time; use formulae to calculate speed and acceleration; relate formula of acceleration to the gradient of a velocity time graph; conversion Graphs; write a ratio as a unit ratio; solve problems involving direction proportion; solve problems involving inverse proportion; proportion problems using " k ", the constant of proportionality. Students will review the KS4 course to date including year 9 before completing and in class examination style test.	Practice book chapter 14 - Percentages - increase, decrease, compound, reverse - Conversions - Speed - Density - Exam questions (assessed)
	Nature of Landmark Assessment	A 35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Construction Loci and Bearings Revision	Students should be able to: Recall properties of quadrilaterals and other 2D shapes; sketch nets of 3D shapes; recognise 3D shapes and their properties; describe 3D shapes using the correct mathematical words; draw lines of symmetry; identify rotational symmetry; identify and sketch planes of symmetry in 3D shapes; draw plans and elevations of 3D shapes; sketch 3D shapes based on their plans and elevations; construct ASA, SAS, SSS and RHS triangles; identify congruent triangles; construct angles; draw diagrams to scale; use scales on maps and diagrams to work out lengths and distances; make accurate drawings of nets of common 3D shapes; constructing an isosceles trapezium; construct a regular hexagon; bisect angles and lines using a ruler and compass; use a ruler and compass to construct 60, 45, 30 degrees; draw loci for the path of points that follow a given rule; identify regions bounded by loci to solve practical problems; angles in parallel lines; find and use 3-figure bearings; use angles at parallel lines to calculate bearings. Revision of key topic areas identified throughout the year by topic tests analysis. Past paper practice for both non calculator and calculator examinations.	Practice book chapter 7 - Scale drawings - Loci - Bearings - Exam questions (assessed) 1 Past examination paper per week.
	Nature of Landmark Assessment	A 35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Quadratic Equations and Graphs	Students should be able to: Multiplying double brackets; recognising quadratic equations; square single brackets; plot graphs of quadratic functions; use quadratic graphs to solve problems; factorise quadratic expressions; solve quadratic functions algebraically.	Practice book chapter 16 - Expanding - Plotting quadratics - Using and memorising the quadratic formula - Factorising - Exam questions (assessed)
	Nature of Landmark Assessment	A 35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Circle, Cylinders, Cones and Sphere Fractions, Indices and Standard From	Students should be able to: Round accurately to a given number of significant figures or decimal place; rearrange equations; calculate the circumference of a circle; solve problems involving the circumference of a circle; calculate the circumference and radius of a circle; work out percentage error intervals; evaluate squares and square roots; substitute into formulae and solve for the unknown; work out the area of a circle; work out the radius or diameter of a circle; solve problems involving the area of a circle; give answers in terms of π; simplify fractions; work out areas of semicircles and quarter circle and perimeters; solve problems involving sectors of circles; work out the volume and surface area of cylinders; work out the volume and surface area of a pyramid; work out the volume and surface area of a cone; work out the length of the hypotenuse using Pythagoras' theorem; work out the volume, surface area of a sphere. Students should be able to: Converting between top heavy fractions and mixed numbers; multiply and divide mixed numbers and fraction; solve fractions questions in context; find reciprocals of decimals and mixed numbers; to know and use the laws of indices; write reciprocals in index form; use a calculator to find the values of number in index form; write large numbers in standard form; write small numbers in standard form.	Practice book chapter 17 - Using area volume - Surface area formulae - Exam questions (assessed) Practice book chapter 18 - Standard form - Exam questions (assessed)
	Nature of Landmark Assessment	A set of 3 end of year examinations in line with expected GCSE papers	

Year 10 Maths Course Outline

Students have 8 lessons per fortnight
 Homework is set 4 times a fortnight mainly from student practice book to be found on Firefly.

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Equations and inequalities Multiplicative Reasoning	Students should be able to: Expanding double brackets; to be able to factorise quadratics; to be able to find the roots of quadratic equations by factorising; non monic factorisation; completing the square of nonmonic; connection with key points on the graph; problems that require students to set up and solve a pair of simultaneous equations in a real-life context; use simultaneous equations to find the equations of a straight line; solve quadratic equations; use a calculator to evaluate surds; to be able to use the quadratic formula to solve quadratic equations; be able to complete the square for a quadratic equation; to be able to solve a quadratic equation by completing the square; recap changing the subject of an equation; solve simultaneous equations where one is linear and one is a quadratic; use real life situation to construct linear and quadratic equations and solve them; recap inequality notation; to be able to solve inequalities and show the solution on a number line. Students should be able to: Divide using a ratio; express a multiplicative relationship between two quantities as a ratio or a fraction; reason best financial product; product where interest rate changes after 1 or 2 years; solve proportion problems using the unitary method; work out which product offers best value and consider rates of pay; work out the multiplier for repeated proportional change as a single decimal number; represent repeated proportional change using a multiplier raised to a power, use this to solve problems involving compound interest and depreciation; convert between metric speed measures; convert between density measures; convert between pressure measures; use kinematics formulae from the formulae sheet to calculate speed, acceleration, etc; calculate an unknown quantity from quantities that vary in direct or inverse proportion; set up and use equations to solve word and other problems involving direct and inverse proportion; recognise when values are in direct and inverse proportion by reference to the graph form, and use a graph to find the value of k; relate algebraic solutions to graphical representation of the equations	Higher practice book Chapter 9 - Surds - Factorising monic quadratics Solving sim equations Completing the square Using the quadratic formula Exam questions (assessed) Higher practice book Chapter 11 Repeated percentage change - Direct and indirect proportion - Problems involving compound measures - Memorising conversions - Exam questions (assessed)
	Nature of Landmark Assessment	35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Similarity and congruence More Trigonometry	Students should be able to: Find missing angles in parallel lines and triangles; explain that two triangles are congruent; and state the conditions of congruence; prove that shapes are congruent supporting each point with a mathematical justification and to state the condition used; use geometric properties to prove congruency and hence prove further properties such as bisecting diagonals or proving where a midpoint lies; enlarge shapes by scale factors including fractions and mixed numbers; identify corresponding sides; use the ratio of corresponding sides to work out scale factors; discuss why both methods are fundamentally the same; use similarity to find missing lengths; state conditions of similarity; use angles in parallel lines to prove similarity; use similar triangles to work out lengths in real life; find the area of 2 similar shapes; use the link between linear scale factor and area scale factor to solve problems; find the areas of similar shapes given the length scale factor; use the link between scale factors for length, area and volume to solve problems. Students should be able to: Use SOH CAH TOA to find missing lengths and angles; to understand and use upper and lower bounds in calculations involving trigonometry; forming and solving equations using sine and cosine rules; consider transformations of functions to find exact values of $3 \cos (x),-\cos (x)$ or $\sin (x / 2)$; explain why $\sin (x)=\sin (180-x)$ for all value of x; prove the cosine rule by dropping a perpendicular; to know the graph of the Sine function and use it to solve equations; recap exact values of sine/cosine/tangent 30, 45, 60, 90; to know the graph of the Cosine function and use it to solve equations; to know the graph of the Tangent function and use it to solve equations; find the area of a triangle and the sector of a circle; to find the area of a non-right angled triangle using 1/2abSin(C); to find the area of a segment of a circle; use Pythagoras' theorem in 3D; use trigonometry in 3D; transformations of trigonometric graphs $f(x)+a f(x+a), a f(x)$ and $f(a x)$.	Higher practice book Chapter 12 Memorising conditions of congruency and similarity and geometric properties of triangles and quadrilaterals Proving congruency and similarity Exam questions (assessed) Higher practice book Chapter 13 Learning the graphs of Sine Cosine and Tangent - Use sine and cosine rules to find missing lengths and angles - Learn transformations - Exam questions (assessed)
	Nature of Landmark Assessment	35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Cumulative frequency, boxplots and histograms	Students should be able to: Understand how different sample sizes may affect the reliability of conclusions drawn; understand what is meant by a sample and a population; specify the problem and plan, decide what data to collect and what analysis is needed; understand primary and secondary data sources; identify possible sources of bias and plan to minimise it, write questionnaire questions to eliminate bias, and on timing and location of survey to ensure sample is representative ; select and justify a sampling scheme and a method to investigate a population; know the definition of random sampling; use random numbers to get a sample; know the definition and state it in terms of proportion, fraction, percentage or ratio; know the definition of random sampling; know the definition and state it in terms of proportion, fraction, percentage or ratio; construct and interpret cumulative frequency graphs/diagrams and from the graph: estimate frequency greater/less than a given value; find the median and quartile values and interquartile range; compare two cumulative frequency; compare the mean and range of two distributions, or median and interquartile range, as appropriate; produce box plots from raw data, when given quartiles, median and from cumulative frequency and identify any outliers; construct and interpret histograms from class intervals with unequal width; use and understand frequency density; estimate the mean from a histogram; estimate the median from a histogram with unequal class widths. Students will review the KS4 course to date including year 9 before completing and in class examination style test.	Higher practice book Chapter 14 - Learn key terms - Represent data in cumulative frequency diagrams - And histograms - Exam questions (assessed)
	Nature of Landmark Assessment	35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Equations and graphs Revision	Students should be able to: Solve quadratics by factorising; form and solve linear simultaneous equations; solve linear simultaneous equations graphically; recap graph of circle; recap plotting quadratics; solve simultaneous equations involving circles and parabolas graphically; represent inequalities on graphs; interpret graphs of inequalities; factorise and solve quadratics; use graphs to identify solutions to quadratic inequalities; sketch quadratics and use to solve quadratic inequalities; find the co-ordinates of a turning point by completing the square; use completed square form to identify and justify how many roots a quadratic equations has; find approximate solutions to quadratic equations graphically; change the subject of an equations; solve quadratic equations using an iterative process; expand triple brackets; identify positive and negative cubic functions; using x and y intercepts sketch the graphs of cubic functions expressed as a product of 3 linear expressions; identify how many solutions a cubic graph has by considering repeated roots; use an iterative process to find a root of a cubic equation to a given number of d.p's. Revision of key topic areas identified throughout the year by topic tests analysis. Past paper practice for both non calculator and calculator examinations.	Higher practice book Chapter 15 - Solving simultaneous equations - Completing the square - Expanding triple brackets - Use the iterative process to find a root of a cubic - Exam questions (assessed)
	Nature of Landmark Assessment	35 minute tests at the end of each topic will be averaged to give a grade for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Circles	Students should be able to: Recall the definition of a circle and identify and draw parts of a circle, including sector, tangent, chord, segment; use the facts that the angle subtended by an arc at the centre of a circle is twice the angle subtended at any point on the circumference, the angle in a semicircle is a right angle, the perpendicular from the centre of a circle to a chord bisects the chord, angles in the same segment are equal, alternate segment theorem, opposite angles of a cyclic quadrilateral sum to 180°, the tangent at any point on a circle is perpendicular to the radius at that point, tangents from an external point are equal in length to find missing angles on a diagram; prove these facts; prove a line is a tangent ; recognise and construct the graph of a circle centred at the origin of coordinates; find the equation of a tangent to a circle at a given point, by finding the gradient of the radius that meets the circle at that point (circles all centre the origin).	Higher practice book Chapter 16 - Learning theorems - Mixed questions finding missing angles - Recap $y=m x+c$ - Find the equation of a tangent to a circle at a point - Exam questions (assessed)
	Nature of Landmark Assessment	35 minute tests at the end of each topic will be averaged to give a level for the half term.	

	Topic and approximate duration	Key Learning Areas	Homework Options Students will be guided by the class teacher as to which level to complete (according to target level)
	Formulae, Algebraic fractions, Surds and Proof Vectors and Geometric proof	Students should be able to: Multiply surds; multiply two expressions containing surds; rationalise expressions using the difference of two squares; simplify fractions containing one or more non monic quadratics; change the subject of a formula such as, where all variables are in the denominators; find the inverse of complex functions; adding and subtracting surds; rationalise the denominator involving surds; simplify algebraic fractions including 2 monic quadratics; multiply and divide algebraic fractions; solve quadratic equations arising from algebraic fraction equations; change the subject of a formula, including cases where the subject occurs on both sides of the formula, or where a power of the subject appears; solve 'Show that' and proof questions using consecutive integers; use function notation; find the inverse of a linear function Students should be able to: Understand and use vector notation, including column notation, and understand and interpret vectors as displacement in the plane with an associated direction; understand that 2a is parallel to a and twice its length, and that a is parallel to -a in the opposite direction; represent vectors, combinations of vectors and scalar multiples in the plane pictorially; calculate the sum of two vectors, the difference of two vectors and a scalar multiple of a vector using column vectors; multiplying vectors (including algebraic terms); produced geometrical proofs to prove points are collinear and vectors/lines are parallel; find the length of a vector using Pythagoras' Theorem; calculate the resultant of two vectors; solve geometric problems in 2D where vectors are divided in a given ratio.	Higher practice book Chapter 17 - Algebraic fractions - Solving quadratics - Simplifying and rationalising surds - Finding composite and inverse functions - Proof questions - Exam questions (assessed) Higher practice book Chapter 18 - Calculating resultant vectors - magnitudes of vectors - Exam questions (assessed)
	Nature of Landmark Assessment	A set of 3 end of year examinations in line with expected GCSE papers	

